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a b s t r a c t

In this paper, we combine robust optimization and the idea of !-arbitrage to propose a tractable approach
to price a wide variety of options. Rather than assuming a probabilistic model for the stock price dynam-
ics, we assume that the conclusions of probability theory, such as the central limit theorem, hold deter-
ministically on the underlying returns. This gives rise to an uncertainty set that the underlying asset
returns satisfy. We then formulate the option pricing problem as a robust optimization problem that
identifies the portfolio which minimizes the worst case replication error for a given uncertainty set
defined on the underlying asset returns. The most significant benefits of our approach are (a) computa-
tional tractability illustrated by our ability to price multi-asset, American and Asian options using linear
optimization; and thus the computational complexity of our approach scales polynomially with the num-
ber of assets and with time to expiry and (b) modeling flexibility illustrated by our ability to model dif-
ferent kinds of options, various levels of risk aversion among investors, transaction costs, shorting
constraints and replication via option portfolios.

! 2014 Elsevier B.V. All rights reserved.

1. Introduction

The problem of pricing and hedging derivative securities has
been one of the most well studied problems in Financial Econom-
ics. The Nobel prize winning contribution was made by Black and
Scholes (1973) and Merton (1973) when they used the principle
of dynamic replication to obtain a closed form formula for the price
of a European option under the assumption that stock returns fol-
low a log-normal distribution with known volatility. The key idea
developed in this work is that of dynamic replication where one
looks for a portfolio of simpler securities which is self-financing
and whose value at the end of the time horizon matches the payoff
of the option. Such a portfolio of simpler securities is known as a
replicating portfolio, and the value of this portfolio at the begin-
ning of the time horizon, is the no-arbitrage price of the option.

The Black–Scholes model, in spite of its popularity, has some
well-known deficiencies. Firstly, a closed form formula is not known
for many liquid option classes such as American and Barrier options.
This forces one to use computationally expensive simulation based
methods to price these options, which do not scale well when the
payoff of the option depends on the dynamics of multiple securities,
that is when the option is high dimensional. Secondly, there is

ample empirical evidence suggesting that the strong assumption
of the underlying asset price following a stationary geometric
Brownian motion does not hold. Attempts have been made to model
the volatility of the underlying asset as a stochastic quantity. The
notable models include Merton’s Mixed Jump Diffusion model
(Merton, 1976), Cox and Ross’ constant elasticity of variance (Cox
& Ross, 1976), Hull and White’s model (Hull & White, 1987), and
Madan, Carr and Chang’s variance-gamma model (Madan, Carr, &
Chang, 1998). Apart from the problems with the price-dynamics,
there are other factors that arise mostly due to institutional rigidi-
ties such as transaction costs and liquidity issues, that rule out even
the existence of exact replication when markets are incomplete.
And even if an exact replication exists, it is not clear how one may
compute it in a computationally efficient way.

1.1. Motivation

Motivated by the inability to tractably price different types of
options, we look for alternate ways to model the price dynamics
that allow computational tractability in high dimensions. In all
prior work in asset pricing, the key primitive is the underlying sto-
chastic process for the price dynamics. There are difficulties with
assuming a specific stochastic process as the price dynamics:

(a) The only available information is really the returns data. Fit-
ting a specific stochastic process to the data is, in our view, a model
of reality, not reality itself.
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(b) Even if the stochastic process of the underlying price
dynamics is known, it may lead to high dimensional dynamic
programming that is not computationally tractable even under
the !-arbitrage approach, see Bertsimas, Kogan, and Lo (2001).

Given the previous remarks it is, in our view, reasonable to con-
sider alternative modeling approaches that have advantages in
terms of tractability.

The second motivation for this work is the success robust opti-
mization has enjoyed in solving high dimensional optimization
problems under uncertainty (see Ben-Tal & Nemirovski (1998)
and Bertsimas & Sim (2004)). The key philosophical reason behind
the success of robust optimization has been the use of uncertainty
sets as the underlying model of randomness instead of probability
distributions. The resulting robust optimization problems become
mathematical optimization models that scale typically polynomi-
ally with the dimension of the problem compared to dynamic pro-
gramming which scale exponentially.

In this paper, we propose to model the underlying price dynam-
ics using polyhedral uncertainty sets. We then use the !-arbitrage
approach of Bertsimas et al. (2001) where one seeks a self-financ-
ing dynamic portfolio strategy that most closely approximates the
payoff of an option. We use the ‘1-norm to measure the error in
replication instead of the ‘2-norm used in Bertsimas et al. (2001).
This choice of the norm when combined with polyhedral uncer-
tainty sets results in robust linear optimization problems that
can be used to price options. Our approach also allows us to easily
model transaction costs and other market restrictions such as
shorting constraints. Additionally, the use of uncertainty sets
allows us to capture very general price dynamics. Furthermore,
because the approach results in linear optimization problems, we
can accommodate high dimensional problems that, currently, can
only be handled by simulation methods. In addition, we adapt
our approach to capture the phenomenon of ‘‘implied volatility
smile’’ that characterizes the classical Black–Scholes model. Our
explanation of the implied volatility smile is that it is caused by
different levels of risk aversion of an option writer for different
strikes. We model this by constructing different uncertainty sets
for different levels of risk-aversion.

1.2. Contributions and paper outline

Our contribution is a proposal to price options that has the fol-
lowing key characteristics:

(a) Computational Tractability in Pricing High-dimensional
Options: We combine the approach of !-arbitrage replicating port-
folios and robust optimization to solve, via linear optimization
methods, option pricing models that can model high-dimensional
options in markets with transaction costs. We define the dimen-
sion of an option as the number of different random variables on
which the payoff function depends on. The key advantage here is
that unlike Dynamic Programming, our approach scales polynomi-
ally (as opposed to exponentially) with the dimension of the
option. As evidence of computational tractability and accuracy of
the method, we report results for a variety of options (European,
Asian, Lookback, American, Index) using empirical data, which
show that our approach produces prices that are close to those
observed in the options market. Table 1 below summarizes the

number of variables and constraints in the linear optimization
model that prices a variety of options.

(b) Modeling Flexibility: Our approach allows us to model (a)
sophisticated risk measures of the option writer and (b) additional
information on return dynamics such are correlations and heavy-
tailed behavior by adjusting the uncertainty sets appropriately.
For example, in the Central Limit Theorem (CLT) based uncertainty
set (7) below, one can adjust the parameter C to capture various
risk attitudes. As an illustration of the modeling flexibility, we will
show how one can capture the ‘‘implied volatility smile’’ that is
observed in the market by selecting different C’s for different strike
prices. Moreover, we can model correlated price dynamics, by
appropriately modifying the uncertainty set. Finally our approach
allows the ability to price options (a) under transaction costs or
other market restrictions, (b) under dividends, and (c) under repli-
cation using option portfolios.

The paper is structured as follows. In Section 2, we introduce
the overall approach. In Section 3, we use the method to price
European call options. In Section 4, we outline how to price Asian,
Barrier, Lookback and American options as well as how to handle
dividends. In Section 5, we present the method for options in high
dimensions. In Section 6, we offer insights on the optimal replicat-
ing strategies, while in Section 7, we discuss the modeling flexibil-
ity of our approach in modeling the implied volatility smile,
transaction costs and replication via option portfolios. Section 8
contains computational results and Section 9 includes our
conclusions.

1.3. Notation

Throughout the rest of the paper, we denote scalar quantities by
non-bold face symbols (e.g. x 2 R; k 2 N), vectors and matrices by
boldface symbols (e.g. x 2 Rn; n > 1 and A 2 Rn!m; n > 1; m > 1).
We denote random variables with a tilde (e.g. ~x; ~x; eA). The bounds
on random variables are represented by a bar above or below the
symbol representing the random variable (e.g. x 6 ~x 6 !x).

2. The option pricing problem and price models

An option is a contract defined on a set of predetermined under-
lying securities, and is associated with a payoff function. The payoff
function determines the value of the option after the realization of
random returns of the underlying securities. The option pricing
problem refers to the problem of calculating the ‘‘value’’ of an
option before the realization of the random returns. The payoff

function, P eS1
s ;
eS2

s ; . . . ; eSM
s

n o
; fK1;K2; . . . ;Krg

! "
, depends on

(1) eS1
s ;
eS2

s ; . . . ; eSM
s

n o
: vector of prices of the set of M underlying

securities at time s.
(2) s : time at which the option is exercised.
(3) fK1;K2; . . . ;Krg: a set of other parameters, e.g. strike prices,

dividends, etc.

For example, a European Call option’s payoff is given by

max eST " K;0
! "

where eST denotes the price of the underlying secu-

rity at the time of expiry T, and K denotes the strike price.

Table 1
Number of variables and constraints in the linear optimization problem that prices the options.

Option type European Asian Barrier Lookback American Index American index

Size OðTÞ OðTÞ OðTÞ OðT2Þ OðT2Þ OðM % TÞ OðM % T2Þ

T: the number of time periods the option is written for.
M: the number of different assets required to define the option.
Size: Number of variables and constraints in our linear optimization model.
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To determine the value of the option before the realization of
the random returns, we seek to obtain a ‘‘replicating portfolio’’ to
capture the payoff dynamics of the option. We construct this port-
folio out of the set of stocks and a risk free asset. In this section, we
describe how we model the price dynamics of the stocks and how
we model this pricing problem as an optimization problem. In this
section, we assume the case where the option depends on a single
stock.

2.1. Modeling the price dynamics

As described earlier, we do not assume any underlying proba-
bility distribution on the returns. Instead we turn to the conclu-
sions of probability theory, especially results that display the
concentration of measure phenomenon. We next present examples
of uncertainty sets in various cases.

2.1.1. Using historical data and the central limit theorem
Suppose that we have estimated the mean l and the standard

deviation r of i.i.d. random variables ðx1; . . . ; xnÞ from historical
data. We expect that the central limit theorem holds, and we
model uncertainty using the uncertainty set given by

U ¼ ðx1; . . . ; xnÞ
Xn

i¼1

xi " nl
#####

##### 6 Cr
ffiffiffi
n
p

#####

( )
: ð1Þ

2.1.2. Modeling correlation and ARCH models
Consider the random variables x ¼ ðx1; . . . ; xnÞ which are corre-

lated. Specifically, suppose that there are m < n i.i.d. random vari-
ables y ¼ ðy1; . . . ; ymÞwith mean ly and standard deviation ry such
that x ¼ Ay þ !, where A is an n!m matrix and ! ¼ ð!1; . . . ; !nÞ is a
vector of i.i.d. random variables that have mean zero and standard
deviation r!. Then, we construct the uncertainty set given by

UCorr ¼ x x ¼ Ay þ !;
Xm

i¼1

yi "mly

#####

##### 6 Cry
ffiffiffiffiffi
m
p

;
Xn

i¼1

!i

#####

##### 6 Cr!
ffiffiffi
n
p

#####

( )
:

ð2Þ

Using the same approach, we also model autocorrelated returns. For
instance, consider an AR(q) model given by

yt ¼ a0 þ a1 % yt"1 þ . . .þ aq % yt"q þ !t ;

where the return at time t depends on the returns of the previous q
periods and !t ’s are i.i.d noise. To model this, we construct the
uncertainty set given by

UARðqÞ ¼ ðy1; . . . ;yT Þ yt ¼ a0þa1 %yt"1þ . . .þaq %yt"qþ!t ;8t;
XT

t¼1

!t

#####

#####6Cr!
ffiffiffi
T
p

#####

( )
:

2.1.3. Modeling heavy tails
The central limit theorem belongs to a broad class of weak con-

vergence theorems. These theorems express the fact that a sum of
many independent random variables tend to be distributed accord-
ing to one of a small set of stable distributions. When the variance
of the variables is finite, the stable distribution is the normal distri-
bution. In particular, these stable laws allow us to construct uncer-
tainty sets for heavy-tailed distributions.

Theorem 2.1 Nolan (1997). Let Y1;Y2; . . . be a sequence of i.i.d.
random variables, with mean l and undefined variance. If Yi ( Y,
where Y is a stable distribution with parameter a 2 ð0;2Þ, then
Pn

i¼1Yi " nl
%

n1=a& '
( Y.

Motivated by this result, one can construct an uncertainty set
UHT representing the random variables fYig as follows

UHT ¼ z1; z2; . . . ; znð Þ
Xn

i¼1

zi " nl
#####

##### 6 Cn1=a

#####

( )
; ð3Þ

where C can be chosen based on the distributional properties of the
random variable Y. Note that UHT is again a polyhedron.

In this paper, we construct uncertainty sets of the form (1)
using historical stock price information. In particular, we consider
a discrete model of price movements where the price of the stock
changes at discrete points of time. Let ~rS

t be the return at t; i.e., the
return from period ½t; t þ 1Þ. Assuming that the returns are identi-
cal and independent random variables, we have by applying the
CLT to the random variables ~rS

1;~r
S
2; . . . ;~rS

s
( )

,
Ps

i¼1 log 1þ ~rS
i

& '
" s % llog

rlog %
ffiffiffi
s
p ( Nð0;1Þ; as s!1;

where llog; rlog are mean and standard deviation of log 1þ ~rS
i

& '
,

respectively.
We, therefore, assume as a primitive that this CLT type of

behavior happens deterministically. That is, we assume that the
returns satisfy

log eRS
s " s % llog

rlog %
ffiffiffi
s
p

#####

##### 6 C 8s; ð4Þ

where eRS
s ¼

Qs
i¼1 1þ ~rS

i

& '
, is the cumulative return up to time s, and

the parameter C determines how conservative or risk averse we
want the solution to be. For example, if we select C ¼ 2, then from
the CLT we have that the probability of the event described in Eq.
(4) is approximately 95%. In Section 7, we discuss further how to
choose the parameter C.

Note that Eq. (4) is equivalent to

exp sllog " C %
ffiffiffi
s
p
% rlog

! "
6 eRS

s

6 exp sllog þ C %
ffiffiffi
s
p
% rlog

! "
8s;

ð5Þ

which defines a box uncertainty set for the cumulative returns. In
addition, we assume some bounds on the single period return ~rS

s
and since 1þ ~rS

s ¼ eRS
s

.
eRS

s"1, we have:

lr " Crr 6
eRS

s
eRS

s"1

6 lr þ Crr 8s; ð6Þ

where lr and rr are the mean and standard deviation of ð1þ ~rsÞ,
respectively.

In summary, we assume that the cumulative stock returns
belong to the following uncertainty set (a polyhedron) defined by
(5) and (6)

UCLT ¼ eRS
t

###RS
t 6 eRS

t 6 RS
t ; r

S
t % eR

S
t"1 6 eRS

t 6 rS
t % eRS

t"1; 8t ¼ 1; . . . ; T
n o

:

ð7Þ

where RS
t ¼ et%llog"C%

ffiffi
t
p
%rlog ; RS

t ¼ et%llog þC %
ffiffi
t
p
% rlog; rS

t ¼ lr " C % rr;

rS
t ¼ lr þ C % rr . The values of lr; rr; llog; rlog can be obtained

from empirical data on single period returns. Note that the uncer-
tainty set UCLT is described by OðTÞ constraints.

2.2. The option pricing problem as an optimization problem

The idea of our approach is to find a replicating portfolio that
consists of the underlying stock S and a risk-free asset B so that
the value of this portfolio at the time of exercise matches the pay-
off of the option as closely as possible. We refer to the difference as
the replication error, which is given by j PðST ;KÞ "WT j, where WT

is the value of the portfolio at the time of exercise T. In a robust
optimization setting, our goal is to find a portfolio that minimizes
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the worst case replication error (denoted by !), between the port-
folio wealth and the option payoff, over all possible returns that lie
in a predetermined uncertainty set UCLT defined in Section 2.1. The
optimal portfolio thus obtained, will have payoff that is within *!
from the actual option payoff for all possible realizations of the
returns lying in UCLT. The price of the option would thus be the ini-
tial value of this replicating portfolio.

The associated optimization problem can be represented as
follows

min
xS

t ;x
B
t ;ytf g

max
eRS

t2U
CLT

( ) j PðST ;KÞ "WT j ð8Þ

s:t: WT ¼ xS
T þ xB

T

xS
t ¼ 1þ ~rS

t"1

& '
xS

t"1 þ yt"1

& '
; 8t ¼ 1; . . . ; T;

xB
t ¼ 1þ rB

t"1

& '
xB

t"1 " yt"1

& '
; 8t ¼ 1; . . . ; T;

where xS
t is the amount invested in the underlying security, xB

t is the
amount invested in the risk-less asset, and yt is the amount traded
from the underlying security to the risk-less asset during the period
½t; t þ 1Þ. In this optimization formulation, we seek to minimize the
worst case replication error. After finding the portfolio, the price of
the option would then be given by xS

0 þ xB
0, which is the value of the

portfolio at time t ¼ 0.

2.2.1. Put-call parity
The optimal replicating portfolio obtained by solving the

optimization problem (8) will have a payoff that is within *! from
the actual option payoff for all possible realizations of the returns
lying in UCLT. Moreover, as T !1, and assuming complete mar-
kets, we are guaranteed to have a replication error of 0. For finite
T, we obtain non-zero replication errors but are often close to zero,
see Bertsimas, Kogan, and Lo (2000) for a thorough discussion. In
the case of incomplete markets and markets with frictions,
however, the replication error ! is non-zero and can be seen as a
measure of incompleteness in the markets.

Model free properties such as the put-call parity defines a
relationship between the price of a European call (C) and put (P)
option with identical strike (K) prices and expiry (T) in a friction-
less market

C " P ¼ S0 " Ke"rT :

We next present the put-call parity in the robust framework (the
proof is in the Supplementary materials section).

Theorem 2.2. If !C and !P are the replication errors obtained by
solving the corresponding option pricing optimization problems (8) for
calls and puts respectively, then

S0 " Ke"rT " !C " !P 6 C " P 6 S0 " Ke"rT þ !C þ !P: ð9Þ

3. Pricing European options

In this section, we present our approach in the context of a
European call option that gives the option holder the right to buy
the stock at a predetermined price K, at T. and has payoff
P eST ;K
! "

¼ eST " K
! "þ

. Using the same set of decision variables
and data as in (8), the resulting optimization problem becomes

min
xS

t ;x
B
t ;ytf g

max
eRS

t2U
CLT

( ) eST " K
! "þ

" xS
T þ xB

T

& '###
### ð10Þ

s:t: xS
t ¼ 1þ ~rS

t"1

& '
xS

t"1 þ yt"1

& '
; 8t ¼ 1; . . . ; T;

xB
t ¼ 1þ rB

t"1

& '
xB

t"1 " yt"1

& '
; 8t ¼ 1; . . . ; T:

We next reformulate this robust optimization problem into a linear
optimization problem. To do this, we introduce the following vari-
able transformations:

aS
t ¼

xS
t

RS
t

; aB
t ¼

xB
t

RB
t

; bt ¼
yt

RS
t

; where eRS
t

¼
Yt"1

i¼0

1þ ~rS
i

& '
; and RB

t ¼
Yt"1

i¼0

1þ rB
i

& '
: ð11Þ

Substituting these new variables, we obtain the following
formulation:

min
aS

t ;a
B
t ;btf g

max
eRS

t 2U
CLT

( ) S0
eRS

T " K
! "þ

" eRS
TaS

T þ RB
TaB

T

! "###
###

s:t: aS
t ¼ aS

t"1 þ bt"1; 8t ¼ 1; . . . ; T;

aB
t ¼ aB

t"1 " bt"1

eRS
t"1

RB
t"1

; 8t ¼ 1; . . . ; T:

Substituting all intermediate aB
t ; aS

t , we obtain

min
aS

t ;a
B
t ;btf g

max
eRS

t 2U
CLT

( ) S0
eRS

T "K
! "þ

" aS
0þ
XT

t¼1

bt"1

 !
eRS

T "aB
0RB

T þ
XT"1

t¼0

bt
RB

T

RB
t

eRS
t

#####

#####: ð12Þ

We next describe the steps involved in obtaining a linear optimiza-
tion formulation of (12). The same steps would be used in future
sections to obtain linear formulations for other options. Consider
the inner optimization problem of (12), and let d denote its objec-
tive value. We observe that d is the optimal solution of the problem
min j

s:t: j P S0
eRS

T " K
! "þ

" aS
0 þ

XT

t¼1

bt"1

 !
eRS

T " aB
0RB

T þ
XT"1

t¼0

bt
RB

T

RB
t

eRS
t ; 8eRS

t 2 U
CLT;

j P " S0
eRS

T " K
! "þ

" aS
0 þ

XT

t¼1

bt"1

 !
eRS

T " aB
0RB

T þ
XT"1

t¼0

bt
RB

T

RB
t

eRS
t

 !
; 8eRS

t 2 U
CLT:

Moreover, in order to capture the piecewise-linear nature of the
payoff function S0

eRS
T " K

! "þ
, we partition the uncertainty set UCLT

according to whether eRS
T P K=S0. In particular, let

U1
a ¼ U

CLT \ eRS
T P

K
S0

* +
; U1

b ¼ U
CLT \ eRS

T 6
K
S0

* +
:

Using this partition, we next obtain another equivalent formulation
of (12):

min
aS

0 ;a
B
0 ;btf g

! ð13Þ

s:t: !P S0
eRS

T " K
! "

" aS
0 þ

XT"1

t¼0

bt

 !
eRS

T " aB
0RB

T þ
XT"1

t¼0

bt
RB

T

RB
t

eRS
t ; 8eRS

t 2 U
1
a ;

!P " S0
eRS

T " K
! "

" aS
0 þ

XT"1

t¼0

bt

 !
eRS

T " aB
0RB

T þ
XT"1

t¼0

bt
RB

T

RB
t

eRS
t

 !
; 8eRS

t 2 U
1
a ;

!P " aS
0 þ

XT"1

t¼0

bt

 !
eRS

T " aB
0RB

T þ
XT"1

t¼0

bt
RB

T

RB
t

eRS
t ; 8eRS

t 2 U
1
b ;

!P " " aS
0 þ

XT"1

t¼0

bt

 !
eRS

T " aB
0RB

T þ
XT"1

t¼0

bt
RB

T

RB
t

eRS
t

 !
; 8eRS

t 2 U
1
b %

The above formulation can be converted to an equivalent linear
optimization problem using duality theory as in Bertsimas and
Sim (2004) as follows:
min !

s:t:
K
S0

z1 þ
XT

t¼1

RS
t pt;1 þ

XT

t¼1

RS
t qt;1 " K " aB

0RB
T 6 !;

p1;1 þ q1;1 " rS
1m2;1 " rS

1n2;1 " b1
RB

T

RB
1

¼ 0;

pt;1 þ qt;1 þmt;1 þ nt;1 " rS
t mtþ1;1 " rS

t ntþ1;1 " bt
RB

T

RB
t

¼ 0; 8t ¼ 2; . . . ; T " 1;

z1 þ pT;1 þ qT;1 þmT;1 þ nT;1 " S0 " aS
0 "

XT

t¼1

bt"1

 !
¼ 0;

K
S0

z2 þ
XT

t¼1

RS
t pt;2 þ

XT

t¼1

RS
t qt;2 þ K þ aB

0RB
T 6 !;

p1;2 þ q1;2 " rS
1m2;2 " rS

1n2;2 þ b1
RB

T

RB
1

¼ 0;

pt;2 þ qt;2 þmt;2 þ nt;2 " rS
t mtþ1;2 " rS

t ntþ1;2 þ bt
RB

T

RB
t

¼ 0; 8t ¼ 2; . . . ; T " 1;
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z2 þ pT;2 þ qT;2 þmT;2 þ nT;2 þ S0 " aS
0 "

XT

t¼1

bt"1

 !
¼ 0;

K
S0

z3 þ
XT

t¼1

RS
t pt;3 þ

XT

t¼1

RS
t qt;3 " aB

0RB
T 6 !;

p1;3 þ q1;3 " rS
1m2;3 þ rS

1n2;3 " b1
RB

T

RB
1

¼ 0;

pt;3 þ qt;3 þmt;3 þ nt;3 " rS
t mtþ1;3 þ rS

t ntþ1;3 " bt
RB

T

RB
t

¼ 0; 8t

¼ 2; . . . ; T " 1;

z3 þ pT;3 þ qT;3 þmT;3 þ nT;3 þ aS
0 þ

XT

t¼1

bt"1 ¼ 0;

K
S0

z4 þ
XT

t¼1

RS
t pt;4 þ

XT

t¼1

RS
t qt;4 þ aB

0RB
T 6 !;

p1;4 þ q1;4 " rS
1m2;4 þ rS

1n2;4 þ b1
RB

T

RB
1

¼ 0;

pt;4 þ qt;4 þmt;4 þ nt;4 " rS
t mtþ1;4 þ rS

t ntþ1;4 þ bt
RB

T

RB
t

¼ 0; 8t

¼ 2; . . . ; T " 1;

z4 þ pT;4 þ qT;4 þmT;4 þ nT;4 " aS
0 þ

XT

t¼1

bt"1

 !
¼ 0;

pt;i + 0; qt;i P 0; mt;i + 0; nt;i P 0; 8t ¼ 1; . . . ; T; 8i ¼ 1; . . . ;4;

z1 + 0; z2 + 0; z3 P 0; z4 P 0:

The size of the linear optimization problem, thus obtained, scales
linearly with the number of periods T with 16T þ 4 decision vari-
ables and 4T þ 4 constraints.

4. Pricing other single asset options

In this section, we extend our proposed methodology to price
other options whose underlying is a single asset. In particular, we
discuss the Asian, Barrier, Lookback, American Put Option and
how to handle dividends. We discuss how the pricing problems of
these options can be formulated as linear optimization problems.

4.1. Pricing Asian options

An Asian option (also called an average option) is an option
whose payoff is linked to the average value of the underlying secu-
rities on a specific set of dates during the life of the option. Con-
sider an Asian option with an expiry date T and strike price K. If
we discretize time into T time periods, the payoff of an Asian call
option is given by ðSave " KÞþ, where Save ¼

PT
t¼1St

.
T . Here St is

the price of the security observed at time t. Given this payoff func-
tion, we can formulate the pricing problem proceeding as in Sec-
tion 3. The optimization problem in this case is given by

min
aS

t ;a
B
t ;btf g

max
eRS

t 2U
CLT

( ) S0

XT

t¼1

eRS
t

T
" K

 !þ
" eRS

TaS
T þ RB

TaB
T

! "#####

#####

s:t: aS
t ¼ aS

t"1 þ bt"1; 8t ¼ 1; . . . ; T;

aB
t ¼ aB

t"1 " bt"1

eRS
t"1

RB
t"1

; 8t ¼ 1; . . . ; T:

We reduce this optimization problem into
min

aS
0 ;a

B
0 ;btf g

!

s:t: !P S0

XT

t¼1

eRS
t

T
"K

 !

"aS
0
eRS

T "aB
0RB

T þ
XT

t¼1

bt"1
RB

T

RB
t"1

eRS
t"1" eR

S
T

 !#####

#####; 8
eRS

t 2U
1
c ;

!P "aS
0
eRS

T "aB
0RB

T þ
XT

t¼1

bt"1
RB

T

RB
t"1

eRS
t"1" eR

S
T

 !#####

#####; 8
eRS

t 2U
1
d %

where U1
c and U1

d define a partition of UCLT as before. In particular,

U1
c ¼ U

CLT
\ XT

t¼1

eRS
t

T
P

K
S0

( )
andU1

d ¼ U
CLT
\ XT

t¼1

eRS
t

T
6 K

S0

( )
:

Proceeding as in the case of European Options, we construct an
equivalent linear optimization problem of size OðTÞ, which is pre-
sented in the Supplementary materials section.

4.2. Pricing barrier options

Barrier options are contracts whose payoff depends on whether
or not the price of the underlying asset crosses a certain level dur-
ing the option’s lifetime. For example, a down-and-out barrier
option is active as long as the price of the underlying asset did
not go below a predetermined barrier during the option lifetime.

In our framework, all these options can be modeled by appropri-
ately changing the uncertainty sets. Note that these options become
inactive as soon as some condition C of the form St 6 a or St P b is
reached. These conditions can be equivalently expressed as linear
constraints on the cumulative returns of the form

RS
t 6 a0 or RS

t P b0;

appropriately. The problem of optimal replication then reduces to

min
xS

t ;x
B
t ;ytf g

max
eRS

t 2U
CLT\C

( ) j PðST ;KÞ "WT j;

because if C is not satisfied, the option ceases to exist and one need
not worry about replicating its payoff. For example, in the case of
down-and-out barrier option, the condition C is given by

eRS
t P lb; 8t ¼ 1; . . . ; T;

where lb is the barrier below which the option is inactive. Therefore
the optimal replication problem for this option takes the form of
optimization problem (19) with the uncertainty set UCLT replaced
by Ubarrier, where

Ubarrier ¼ UCLT \ eRS
t P lb; 8t ¼ 1; . . . ; T

n o
:

Other barrier options can be modeled in a similar manner. A linear
optimization formulation can be obtained following the same
approach as before, whose size is again linear in T, which is pre-
sented in the Supplementary materials section.

4.3. Pricing Lookback options

A lookback option is a path dependent option settled based
upon the maximum or minimum underlying value achieved during
the entire life of the option. At expiration, the holder can look back
over the life of the option and exercise based upon the optimal
underlying value achieved during that period. Here we consider a
fixed strike Lookback call option. Such an option is described by
the strike price K and the time of exercise T, with the payoff func-

tion given by ðS0
eRmax " KÞ

þ
where eRmax ¼maxt¼1;...;T

eRS
t

n o
.

Note that the constraint eRmax ¼maxt¼1;...;T
eRS

t

n o
is non-linear. In

order to obtain a linear formulation, we consider a partition

U1
k

( )T

k¼1 of the uncertainty set UCLT, where

U1
k ¼ U

CLT \ RS
k ¼ Rmax

n o
¼ UCLT \ RS

k P RS
t 8t ¼ 1; . . . ; T

n o
:

Using this partition, we are able to isolate the sample paths in
which Rmax occurs in the kth time period, for each k ¼ 1; . . . ; T . For
each of these sets, we obtain the best replicating portfolio and then
choose the best among them. This is modeled as follows:
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min
aS

0 ;a
B
0 ;btf g

! ð14Þ

s:t: 8k¼1; . . . ;T

!P S0
eRS

k"K"aS
0
eRS

T "aB
0RB

T þ
XT

t¼1

bt"1
RB

T

RB
t"1

eRS
t"1" eR

S
T

 !#####

#####; 8U
1
k \ eRS

k P
K
S0

* +
;

!P " aS
0þ
XT

t¼1

bt"1

 !
eRS

T "aB
0RB

T þ
XT

t¼1

bt"1
RB

T

RB
t"1

eRS
t"1

#####

#####; 8U
1
k \ eRS

k 6
K
S0

* +
:

We then formulate (14) as a linear optimization problem as before,
whose size is quadratic in T. Modeling the non-linear constraint
eRmax ¼maxt¼1;...;T

eRS
t

n o
leads to the increase in size. The resulting

linear optimization formulation is presented in the Supplementary
materials section.

4.4. Pricing American options

American style options are described by the strike price K and a
time of expiry T, whereas the option can be exercised at any time
s 2 ½0; T,. We discretize time into T time periods. Assuming that
the option is exercised at some instant s 2 f1;2; . . . ; Tg, the payoff
at t ¼ s is given by ðSs " KÞþ for the American Call Option or
ðK " SsÞþ for the American Put. Under the assumption of no divi-
dends paid by the stock, it is always optimal for the American Call
option holder to exercise at the date of expiry. This property makes
the American Call Option equivalent to that of an European Call
Option with the same strike K and the same date of expiry T.

On the other hand, a general optimal exercising strategy is not
known for the case of American Put Options. The option holder is
expected to solve for the exercising strategy that maximizes his
risk-weighted utility. Neither the utility function nor the risk appe-
tite of the option holder is necessarily known to the option writer,
and hence as in the case of other options, we cannot write down
the payoff function even after all the random returns are revealed.
Therefore, we decide to be robust with respect to the option
holder’s exercising date and hence seek to obtain a replicating
portfolio achieving minimum replication error for any exercising
policy.

Without loss of generality, we assume that the option holder
can exercise at any of the time steps s 2 f1;2; . . . ; Tg. The problem
then reduces to determining the dynamic hedging strategy that
minimizes the worst case difference between the replicating port-
folio and the payoff accounting for all the possible times at which
the option holder can exercise his option.

The problem can be formulated as follows:

min
aS

t ;a
B
t ;btf g

max
eRS

t 2U
CLT

( )max
s¼1;...;T

K " S0
eRs

! "þ
" eRS

saS
s þ RB

saB
s

! "###
###

s:t: aS
t ¼ aS

t"1 þ bt"1; 8t ¼ 1; . . . ; T;

aB
t ¼ aB

t"1 " bt"1

eRS
t"1

RB
t"1

; 8t ¼ 1; . . . ; T;

where s stands for the time at which the option is exercised. Substi-
tuting all intermediate aB

t ; aS
t , the above formulation reduces to

min
aS

t ;a
B
t ;btf g

max
eRS

t2U
CLT

( )max
s¼1;...;T

K " S0
eRs

! "þ
" aS

0 þ
Xs

t¼1

bt"1

 !
eRS

s " aB
0RB

s

#####

þ
Xs

t¼1

bt"1
RB

s

RB
t"1

eRS
t"1

#####:

Proceeding as before, one can obtain another equivalent formula-
tion which we present in Eq. (15) below.

min
aS

0 ;a
B
0 ;btf g

! ð15Þ

s:t: 8k ¼ 1; . . . ; T

!P K " S0
eRS

k

! "
" aS

0
eRS

T " aB
0RB

T þ
XT"1

t¼0

bt
RB

T

RB
t

eRS
t " eR

S
T

 !#####

#####

8eRS
t 2 U

CLT \ eRS
k 6

K
S0

* +
;

!P " aS
0 þ

XT
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bt"1

 !
eRS

T " aB
0RB

T þ
XT"1

t¼0

bt
RB

T

RB
t

eRS
t

#####

#####

8eRS
t 2 U

CLT \ eRS
k P

K
S0

* +
:

In Eq. (15) the case k ¼ s refers to the scenario when the option
holder exercises the option during the interval s; sþ 1½ Þ. We can
now obtain a linear formulation as in the case of previous options.
Note that there are 4T constraints in (15), this leads to 16T2 þ 4T
decision variables and 4T2 þ 4T constraints. The resulting linear
optimization formulation is presented in the Supplementary mate-
rials section.

4.5. Incorporating dividends

In all the options considered so far, we have assumed that the
stocks do not yield any dividends. We show in this section how
to incorporate dividends. In the absence of dividends, the portfolio
evolves according to

xS
t ¼ 1þ ~rS

t"1

& '
xS

t"1 þ yt"1

& '
; 8t ¼ 1; . . . ; T;

xB
t ¼ 1þ rB

t"1

& '
xB

t"1 " yt"1

& '
; 8t ¼ 1; . . . ; T:

With dividends, there is a cash infusion in each time period leading
to the following evolution

xB
t ¼ 1þ rB

t"1

& '
xB

t"1 " yt"1 þ rdiv
t"1 % x

S
t"1

& '
; 8t ¼ 1; . . . ; T;

where rdiv
t"1 is the rate of dividends, which can also be uncertain. The

uncertainty in the dividend rates can also be modeled using an
uncertainty set, and given its linear form, this extension does not
add any extra complexity in our framework. Using techniques of
Section 3, we obtain linear formulations to price options in the pres-
ence of dividends.

5. Pricing options in high dimensions

In this section, we present the main advantage of our approach
and present our methodology for pricing options that depend on M
underlying assets. When M is large, such an option is difficult to
price using current methods firstly because of the unavailability
of an analytic solution and secondly, because of the curse-
of-dimensionality which prevents one from using dynamic
programming.

Proceeding as before, we seek to obtain the optimal solution of
the following optimization problem

min
xm

t ;y
m
tf g

max
~rm

tf g2UM
Pf fSigi¼1;...;M;K
! "

"WT

###
###

s:t: WT ¼
XM

m¼0

xm
T ;

xm
t ¼ 1þ ~rm

t"1

& '
% xm

t"1 þ ym
t"1

& '
8t ¼ 1; . . . ; T;

8m ¼ 1; . . . ;M;

x0
t ¼ 1þ ~rm

t"1

& '
% x0

t"1 "
XM

m¼1

ym
t"1

 !
8t ¼ 1; . . . ; T;

ð16Þ
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where xm
t is the amount invested in asset m; ym

t is the amount
added to asset m, and ~rm

t is the return from asset m during the per-
iod ½t; t þ 1Þ. r0

t is the rate of return from risk-free asset during the
same period. Pf S;Kð Þ is the payoff function of the option, where
S ¼ fSigi¼1;...;M , and UM is the uncertainty set describing the price
dynamics of the M assets. See Eq. (17). The price of the option is
then given by p0 ¼

PM
m¼0x-m0 , where x-m0

( )
m¼1;...;M is the optimal solu-

tion of (16).

5.1. Price dynamics for multiple assets

While modeling the price dynamics of multiple assets, we need
to consider the correlation between the assets. The main aim of
this section is, thus, to find uncertainty sets that model this corre-
lation between the asset returns.

As in Section 2.1, let rm
t and rm

t be the lower and upper bound for

a single period return at time t, for asset m. Also let Rm
t ; Rm

t be the
lower and upper bound for cumulative returns of asset m during
the time ½0; t,. Let R be the covariance matrix of the single period
returns. Given that R is symmetric and positive definite, it has a
Cholesky decomposition and we can compute matrix C ¼ ðRÞ"1=2.
Also let eRt be the M ! 1 vector with eRm

t as its entries and let
"Rm

t ¼ E eRm
t

h i
. In what follows kxk is a general norm of a vector;

usual choices include the ‘1; ‘2 or the ‘1 norm.
We can thus define the uncertainty set UM as follows

UM ¼ eR t

C eR1" "R1

! ",,,
,,,6C;

rm
t
eRm

t"1 6 eRm
t 6 rm

t
eRm

t"1 8t¼ 2; . . . ;T; 8m¼ 1; . . . ;M;

Rm
t 6 eRm

t 6 Rm
t ; 8t¼ 1; . . . ;T; 8m¼ 1; . . . ;M:

#########

8
>>><

>>>:

9
>>>=

>>>;
:

ð17Þ

The constraint C eR1 " "R1

! ",,,
,,, 6 C captures the correlation between

the asset returns.

5.2. Optimization formulation

The ability to obtain a linear formulation depends on the norm

that we choose for the constraint C eR1 " "R1

! ",,,
,,, 6 C, as the other

constraints in UM are all linear. A linear formulation is easy to
obtain if we choose the ‘1 or ‘1 norm. The D-norm introduced in
Bertsimas and Sim (2004) and further explored in Bertsimas,
Pachamanova, and Sim (2004) is another norm that allows linear
formulations. Moreover the D-norm is attractive given its proxim-
ity to ‘2 norm (see Proposition 3 in Bertsimas et al. (2004)).

The D-norm of a vector y 2 Rn!1 for some d 2 ½1; n, is defined as

k j ykjd ¼ max
S[ftgjS # N;jSj6bdc;t2NnSf g

X

j2S

j yj j
 !

þ d" bdcð Þ j yt j
( )

:

In our context, D-norm stands for the maximum possible absolute
deviation of the random returns from the correlation-weighted
mean returns, that occurs when only d of them are allowed to devi-
ate from their mean values.

The D-norm can be rewritten as the solution of an optimization
problem as follows

kj ykjd ¼ max
uj
Pn

j¼1
uj6d; 06uj+1

n o
Xn

j¼1

uj j yj j

¼ min
r;tjrþtjPjyj j; tjP0; j¼1;...;n; rP0f g

d % r þ
Xn

j¼1

tj:

The second equality follows by linear optimization strong duality,
when r is the dual variable corresponding to the constraint

Pn
j¼1uj 6 d and t is the vector of dual variables corresponding to

the constraints uj + 1. Thus, the constraint C eR1 " "R1

! "###
,,,

,,,
###
d
6 C is

equivalent to the set of constraints

r þ tm P C0m eR1 " "R1

! "###
### 8m ¼ 1; . . . ;M;

d % r þ
XM

m¼1

tm 6 C;

t P 0; r . 0:

where Cm refers to the vector corresponding to the mth row of C.
Thus, the D-Norm allows us to construct a polyhedral uncertainty
set UM which can then be used to obtain linear optimization formu-
lations for multi-dimensional options. The resulting linear optimi-
zation formulation is presented in the Supplementary materials
section.

6. Characterizing the optimal replicating strategies

In this section, we present some properties of the optimal rep-
licating strategies obtained from solving the optimization prob-
lems presented so far. In some cases, we will be able to reduce
the dimension of the optimization problems and, in other cases,
we will be able to obtain a closed form expression for the optimal
replicating strategy.

The first property concerns the nature of the optimal replicating
portfolio for an European, Asian and Lookback call option.

Proposition 6.1. In the absence of any restrictions on aB
0 and aS

0,
there exists an optimal replicating strategy of the form

a-B0 ;a-S0 ; b-t
( )T"1

t¼0

n o
¼ fb; s; f0;0; . . . ;0gg, i.e., there exists an optimal

strategy where no re-balancing is necessary to optimally replicate the
payoffs of European, Asian and Lookback options.

The validity of Proposition 6.1 is established in the Supplemen-
tary materials section. Note that Proposition 6.1 allows us to solve
for the option price by solving the following optimization problem

min
aS

0 ;a
B
0f g

max
eRS

t2U
CLT

( ) PðST ;KÞ " eRS
TaS

0 þ RB
TaB

0

! "###
###;

which is a two dimensional optimization problem, and hence easier
to solve. However, this property holds only when there are no
restrictions on the positions in the stock and the bond. This may
not be true in general and the simple nature of the optimal solution
will not hold for such cases.

The second and third properties concern the case of pricing
deep in the money options and assert the existence of certain
choices of C that allow an exact replication and a closed form rep-
lication strategy for such options.

Proposition 6.2. For European call options with strike price K, there
exists an interval ½aðKÞ; bðKÞ, such that 8C 2 ½aðKÞ; bðKÞ, the option
price is given by S0 " K

RB
T
%

Proposition 6.3. For Asian call options with strike price K, there
exists an interval ½aðKÞ; bðKÞ, such that 8C 2 ½aðKÞ; bðKÞ, the option

price is given by S0
PT

t¼1
RB

t
T " K

! "
=RB

T .

The proof of validity of these propositions is presented in the
Supplementary materials section. Propositions 6.2 and 6.3 allow
us to obtain the price of the option in closed form for certain values
of C. For deep-in-the-money options, for a large range of C, the
conditions of Propositions 6.2 and 6.3 are satisfied. Hence, these
results allow us to characterize the option prices of such options
in a closed form.
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7. Modeling flexibility

In Sections 3–5, we have demonstrated the computational trac-
tability of our approach in pricing various kinds of options in high
dimensions. In this section, we discuss the other main advantage of
our approach – modeling flexibility. In particular, we discuss (a)
modeling the implied volatility smile using the risk-aversion
parameter C, (b) modeling transaction costs, and (c) incorporating
options in our replicating portfolio.

7.1. Modeling the implied volatility smile

As the Black–Scholes model became popular, many started
using the model to calculate the volatilities in the market from
the market prices observed. This quantity known as the implied vol-
atility of an option is simply that volatility that makes the model
price exactly equal to the observed market price. Each option has
a unique implied volatility, and traders started to quote options
in terms of implied volatilities (Derman & Kani, 1994). The main
reason is that as the underlying asset price changes through the
day, the implied volatility does not have to be adjusted as much
as the option prices, which change all the time. The implied vola-
tilities started to appear as fundamental quantities associated with
an option.

When the implied volatilities are plotted across strike prices for
options with the same time to expiration and on the same under-
lying stock, it was observed that these plots exhibit smiles or
smirks. According to the Black–Scholes formula, the plot should
be a flat line because only one volatility parameter governs the
underlying stochastic process on which all options are priced.
The same holds for European-style options on the U.S. S&P 500
Index, which were flat from the start of their exchange-based trad-
ing in April 1986 until the U.S. stock market crash of October 1987.
After the crash, however, volatility smiles became skewed; that is,
volatility smiles became downward sloping as the strike price
increased. Other markets also often exhibit volatility smiles. Toft
and Prucyk (1997) and Mayhew (1995) found downward-sloping
volatility smiles for individual stock options, although the curves
were not nearly as steep as in the index smiles.

Many explanations have been offered to explain the downward
sloping and the U-shaped volatility smiles. As noted by Taylor
(1994), there is no economic intuition behind many of these expla-
nations. In particular, Taylor critiques the stochastic volatility
models and suggests that it does not capture the true dynamics
of the smile. We believe that risk attitude of an investor may be
a possible explanation for the existence of the smiles. This is sup-
ported from the widely noted empirical observation that the phe-
nomenon of volatility smile started appearing after the crash of
1987.

One of the key features of our pricing methodology is the ability
to capture the risk attitude of an option writer, when pricing an
option. This is achieved with the help of the parameter C which
characterizes the uncertainty set that is used for pricing. A lower
value for C implies that the user is willing to take higher risk by
ignoring the variability of stock prices. On the other hand, a higher
value of C indicates that the user seeks a price that will allow him
to replicate the payoff of the option for a larger range of stock
prices. Therefore, C becomes a natural way to express one’s risk
aversion.

In tune with the concept of implied volatility, we define the
quantity Implied Coefficient of Risk Aversion ðCimpliedÞ, as the value
of the parameter C, which when input to our model gives out a
value of the price that matches the market price. We observe, from
our experiments, that Cimplied behaves a lot like the implied volatil-
ity. When plotted against the strike prices, it displays a U-shaped

behavior and downward sloping. This observation can be explained
by simply recalling the meaning of the parameters C which stand
for the risk aversion of the option writer.

In particular, we observe, from our experiments, that Cimplied

varies in a near-quadratic manner with K. When we model this
quadratic dependence, we observed that the vertex of the parabola
lies very close to the spot price S0. This suggests that as K moves
away from S0; Cimplied increases indicating the increase of risk aver-
sion of the option writer as K moves away from S0.

In the experiments, we show empirically that a quadratic vari-
ation of Cimplied with K=S0 would be adequate to characterize the
risk aversion of an investor towards different strike prices. We
use the following function to describe the relationship:

CðKÞ ¼ h0 þ h1
K " S0

S0
þ h2

K " S0

S0

- .2

; h2 P 0: ð18Þ

The quantity ðK " S0Þ=S0 captures the distance between the strike
and the spot price and is also called as moneyness in the literature.
We use a quadratic regression model to compute the coefficients
fh0; h1; h2g so that the prices obtained using these C’s match the
market prices of our training set of strikes. We then use the result-
ing quadratic model CðKÞ to calculate C and input it to yield the
price for options with other strike prices.

7.2. Modeling transaction costs and other market constraints

In this section, we show how our framework has the ability to
model transaction costs and other market constraints. The optimal
replication problem for an option with an arbitrary payoff function
is given by (8), and when we account for the transaction costs, the
problem changes to

min
xS

t ;x
B
t ;ytf g

max
eRS

t 2U
1

( ) P ST ;Kð Þ" xS
T þxB

T

& '## ##

s:t: xS
t ¼ 1þ~rS

t"1

& '
xS

t"1"ut"1þv t"1
& '

; 8t¼1; . . . ;T;

xB
t ¼ 1þ rB

t"1

& '
xB

t"1þð1"csellÞut"1"ð1þcbuyÞv t"1
& '

;

8t¼1; . . . ;T;

where ut is the amount removed from the stock and v t is the
amount added to the stock during the time period ½t; t þ 1Þ. Using
the variable transformations as defined in (11), we obtain the fol-
lowing equivalent formulation

min
aS

t ;a
B
t ;btf g

max
eRS

t 2U
1

( ) P ST ;Kð Þ " eRS
TaS

T þ RB
TaB

T

! "###
###

s:t: aS
t ¼ aS

t"1 þ b1
t"1 " b2

t"1; 8t ¼ 1; . . . ; T

aB
t ¼ aB

t"1 þ ð1" csellÞb1
t"1 " ð1þ cbuyÞb2

t"1

& ' eRS
t"1

RB
t"1

;

8t ¼ 1; . . . ; T:

Observing that

aS
T ¼ aS

0 þ
XT

t¼1

b1
t"1 " b2

t"1

& '
;

aB
T ¼ aB

0 þ
XT

t¼1

1" csellð Þb1
t"1 " 1þ cbuy

& '
b2

t"1

& ' eRS
t"1

RB
t"1

( )
;

we obtain equivalent formulations, which we formulate as linear
optimization problems as in Section 3. There have been alternative
approaches (see for example Zakamouline (2006a, 2006b)) to the
option pricing problem involving transaction costs under Brownian
dynamics. To the best of our knowledge, however, these approaches
do not extend to non-Brownian dynamics.
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We also remark that other market constraints such as limits on
shorting and limits on the leverage ratio which can be modeled by
linear constraints can also be incorporated in our approach without
adding any computational complexity. In general, the proposed
approach is capable of handling transaction costs and other real
world constraints without an increase in complexity.

7.3. Replication using option portfolios

In Sections 3–5, the replicating portfolios consisted of the
underlying stocks and bonds. In this section, we consider portfolios
that also includes options. As an illustration, we consider an Euro-
pean Option with strike K, expiry T. We seek to construct a replicat-
ing portfolio consisting of the stock, the bond, and m options with
strikes fK1; . . . ;Kmg with expiry T. Without loss of generality, let
K1 6 . . . 6 Kq 6 K 6 Kqþ1 6 . . . 6 Km. Using the notation from Sec-
tion 3, and let xS

t ; x
B
t

( )T
t¼1 denote the positions in stock and bond,

and let fwigm
i¼1 denote the positions in the m options. The option

pricing problem is, thus, given by

min
xS

t ;x
B
t ;ytf g

max
eRS

t 2U
CLT

( ) eST " K
! "þ

" xS
T þ xB

T þ
Xm

i¼1

wi
eST " Ki

! "þ
 !#####

##### ð19Þ

s:t: xS
t ¼ 1þ ~rS

t"1

& '
xS

t"1 þ yt"1

& '
; 8t ¼ 1; . . . ; T;

xB
t ¼ 1þ rB

t"1

& '
xB

t"1 " yt"1

& '
; 8t ¼ 1; . . . ; T:

We next reformulate this robust optimization problem into a linear
optimization problem. Using the variable transformations as
defined in (11), we obtain the following equivalent formulation

min
aS

t ;a
B
t ;btf g

max
eRS

t 2U
CLT

( ) S0
eRS

T "K
! "þ

" eRS
TaS

T þRB
TaB

T þ
Xm

i¼1

wi S0
eRS

T "Ki

! "þ
 !#####

#####

s:t: aS
t ¼aS

t"1þbt"1; 8t¼1; . . . ;T;

aB
t ¼aB

t"1"bt"1

eRS
t"1

RB
t"1

; 8t¼1; . . . ;T:

Substituting all intermediate aB
t ; aS

t , we obtain

min
aS

t ;a
B
t ;btf g

max
eRS

t2U
CLT

( ) f S0;K;K1; . . . ;Km; eRS
T

! "
" aS

0þ
XT

t¼1

bt"1

 !
eRS

T "aB
0RB

T

#####

þ
XT"1

t¼0

bt
RB

T

RB
t

eRS
t

#####; ð20Þ

where

f S0;K;K1; . . . ;Km; eRS
T

! "
¼ S0

eRS
T " K

! "þ
"
Xm

i¼1

wi S0
eRS

T " Ki

! "þ
:

In order to capture the piecewise linear nature of the terms
S0
eRS

T " Ki

! "þ
, we proceed as in Section 3, to define mþ 2 partitions

U1
"1;K1

;U1
K1 ;K2

; . . . ;U1
Kq ;K ;U

1
K;Kqþ1

; . . . ;U1
Km ;1

n o
;

of the uncertainty set UCLT, where U1
a;b is defined as

U1
a;b ¼ U

CLT \ a
S0
6 eRS

T 6
b
S0

* +
:

Using this partition, we obtain an optimization problem along the
lines of (13), which we convert into an equivalent linear optimiza-
tion problem, by using methods in Bertsimas and Sim (2004).

The same procedure can be used for portfolios of other kinds of
options. As long as the portfolio of options have piecewise linear
payoff functions, we obtain linear optimization formulations for
the option pricing problem.

8. Computational results

In this section, we first describe how to use our methodology (a)
to price an option, (b) to dynamically hedge at every time step to
replicate as closely as possible the payoff of the option. We use
our methodology to price various kinds of options described in this
paper and compare our results against other methodologies and
against prices observed in the market.

8.1. Pricing and hedging methodology

An option-writer would have to solve two related problems (a)
Price the option – the pricing problem and (b) Starting with the
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Fig. 1. European call option pricing: coefficients of risk aversion and fitting the market prices.

Table 2
European call option – price, replication error.

No. T K/S Cimplied Mkt price Model price Error !

1 18 0.654 2.45 7.475 7.48 0.005 0.1769
2 18 0.794 2.056 4.8 4.797 "0.003 0.6542
3 18 0.888 1.75 3.25 3.232 "0.018 1.0989
4 18 0.981 1.66 1.97 1.968 "0.002 1.3692
5 18 1.028 1.65 1.47 1.462 "0.008 1.5239
6 18 1.121 1.73 0.735 0.749 0.014 1.8572
7 18 1.402 2.96 0.055 0.047 "0.008 2.479
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price of the option, dynamically hedge to replicate the payoff at the
time of exercise – the dynamic hedging problem.

8.1.1. The pricing problem
The pricing problem can be solved by solving the linear optimi-

zation problems that we presented in previous sections. This prob-
lem needs the following inputs: (1) Option parameters – fK; Tg,
(2) Historical data, in particular the means and variances –
fl;r;llog ;rlogg, and (3) The Coefficient of Risk Aversion ðCÞ.

The first two sets of inputs are obtained from the specifications
of the option and from historical data, respectively. The other input
parameter required to price the option is the coefficient of risk
aversion.

8.1.2. The dynamic hedging problem
Once an option writer prices an option and sells it, he then seeks

to use the capital obtained from selling the option, to replicate the
payoff of the option at the time of exercising. The following algo-
rithm (Algorithm 1) can be used to do this. The inputs to this algo-

rithm are the price of the option and the option pricing linear
optimization problem that one used to price the option.

Algorithm 1. Dynamic Hedging using the Linear Optimization
Option Pricer

/ Step 1: At t ¼ 0, Solve the Linear Optimization problem that
prices the particular option to obtain the price = aB

0 þ aS
0, where

aB
0 is the amount invested in the bonds and aS

0 is the amount
invested in the stock. Let bt ¼ aB

0 and st ¼ aS
0 for this iteration.

/ While (t < T)
– Add the constraint aS

0 þ aB
0 ¼ bt"1ð1þ rB

t Þ þ st"1ð1þ rS
t Þ to the

optimization problem (This corresponds to the self-financing
nature of our approach).

– Solve the modified optimization problem to obtain bt and st .
– Re-balance according to bt and st .

8.2. Experimental results

In this section, our goal is to demonstrate how well we can
adapt our methodology (by choosing appropriate values for C) to
obtain prices that match with the prices that are observed in the
market. We perform three experiments, each experiment dealing
with a specific type of option. We consider European call options
in Experiment 1, American Put options in Experiment 2 and Index
call options in Experiment 3. Each experiment consists of a training
and a testing stage. In the training stage, we choose a random set of
strike prices and calibrate (compute h0; h1; h2 in Eq. (18)) our
model to match the option prices corresponding to these strikes.
In the testing stage, we use the calibrated model to price the
options for the remaining strikes.

8.3. Experiment 1: Comparison with market prices for European call
options

In this experiment, we aim to price Microsoft (MSFT) 18 week
European call options with spot price S0 ¼ $21:4 for various strikes
in the range $2.5–$30. In the training stage, we compute CimpliedðKÞ
for each of the options with strikes in the training set. Then we fit a
quadratic function to these values, thus obtaining the coefficients
of the quadratic function in (18). We observe from Fig. 1, that
the assumption of quadratic dependence of the C’s on the strike
prices, is empirically valid. We observe that for deep-in-the-money
options, the set of values of C that give us the market price is an
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Fig. 2. American put option pricing: coefficients of risk aversion and fitting the market prices.

Table 4
Comparison of replication errors for American Put Option with CðKÞ as in Eqs. (18)
and (21).

No. T K/S !1 !2

1 25 0.605 0.3982 0.237
2 25 0.806 0.9996 0.5342
3 25 0.968 1.9487 1.08
4 25 1.008 2.2109 1.2482
5 25 1.21 3.5781 1.9217
6 25 1.411 5.9713 2.8723
7 25 1.512 6.832 3.2981
8 25 1.815 12.5842 7.1987

Table 3
American put option – replication error for CðKÞ as in Eq. (18).

No. T K/S Cimplied Mkt price Model price Error !

1 25 0.605 2.62 0.17 0.201 0.031 0.3982
2 25 0.806 1.83 0.695 0.589 "0.106 0.9996
3 25 0.968 1.6 1.895 1.764 "0.132 1.9487
4 25 1.008 1.59 2.365 2.266 "0.099 2.2109
5 25 1.21 1.9 5.85 5.939 0.089 3.5781
6 25 1.411 2.87 10.5 10.703 0.203 5.9713
7 25 1.512 3.63 12.975 13.2 0.225 6.832
8 25 1.815 7.7 20.45 20.303 "0.147 12.5842
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interval, as was explained by Proposition 6.2. The out of sample
results are tabulated in Table 2.

8.4. Experiment 2: Comparison with market prices for American put
options

In this experiment, we consider MSFT 25 week American Put
Options, with spot price S0 ¼ $24:8 and strike prices in the range
$7.5–$50. We perform this experiment with real market prices.
The results are presented in Fig. 2.

We observe from Table 3 that, for away-from-the-money situa-
tions, option writers have larger risk aversion as implied by bigger
magnitude of Cimplied, which is consistent with Eq. (18).

Note however that the replication errors are higher for Ameri-
can options. This is due to the simplistic choice of Eq. (18). By
including other option-specific effects or higher order terms in
the choice of functional form of CðKÞ will provide us with a better
fit. For instance, we considered the following different functional
form in Eq. (21) for the case of American Put options.

CðKÞ ¼ h0 þ h1
K " S0

S0
þ h2

K " S0

S0

- .2

þ h3
K " S0

S0

- .3

: ð21Þ

In Table 4, we present a comparison of the replication errors !1 and
!2 obtained by using the functional forms in Eqs. (18) and (21),
respectively. We observe that we obtain an improvement of almost
50% for all the cases.

8.5. Experiment 3: Comparison with market prices for European index
options

In this experiment, we consider the 1/100 Dow Jones Industrial
Average Index Options (DJIA). The underlying value of these
options is based on the level of the Dow Jones Industrial Average,
a price-weight stock market index calculated from the stock prices
of thirty of the largest public companies in the US. We consider
8 week options with spot S0 ¼ $90:8, for strike prices in the range
$74–$105.

We again observe from Fig. 3, a quadratic relationship between
the Cimplied and the strike price K. In tune with our expectations, for
in-the-money and out-of-the-money situations, we observe larger
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Fig. 3. European index call option pricing: coefficients of risk aversion and fitting the market prices.

Table 5
European index call option – price, replication error.

No. T K/S Cimplied Mkt price Model price Error !

1 8 0.944 1.01 6 5.918 "0.082 2.002
2 8 0.999 0.92 2.69 2.647 "0.043 2.5717
3 8 1.021 0.91 1.75 1.762 0.012 2.6012
4 8 1.032 0.92 1.38 1.402 0.022 2.5615
5 8 1.098 1.07 0.225 0.254 0.029 1.9665
6 8 1.109 1.13 0.16 0.17 0.01 1.881

Table 6
Summary: percentage errors between the model prices and the market prices.

Errorsnoption type Asian
(%)

Lookback
(%)

Asian index
(%)

Maximum absolute error (in-
sample)

12.3 17.1 14.4

Average absolute error (in-sample) 7.4 13.4 10.3
Maximum absolute error (out-of-

sample)
18.7 19.3 17.3

Average absolute error (out-of-
sample)

11.2 15.3 12.7

Table 7
Computational times for European option pricing problems with replication error
! < 1% using uncertainty set UCLT.

Number of assets M 50 100 200 500

Time (in minutes) 0.03 0.1 0.5 1.5

Table 8
Computational times for Asian option pricing problems with replication error ! < 1%

using uncertainty set UCLT.

Number of assets M 50 100 200 500

Time (in minutes) 0.05 0.25 1.5 2

Table 9
Effect of the uncertainty set on the computational times (in minutes) for European
and Asian option pricing problems with replication error ! < 1%.

Uncertainty set UCLT UHT UCorr

European option 1.5 1.6 2.5
Asian option 2 2.2 3
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risk aversion as implied by bigger magnitude of Cimplied. The fit
between the prices obtained is also encouraging.

8.6. Summary of other experiments

Table 6 summarizes the results of all the experiments consid-
ered and include Asian and Lookback options. The errors between
the model prices and the market prices for the single asset Euro-
pean options, and European style Index option are smaller than
the errors obtained in other types of options. In general, when
the option type is simpler (e.g. European or Asian) the replication
error is small. The largest replication error occurs in the American
put option where the price we produce tries to protect the holder
against the worst choice for exercising the option, thus adding an
additional layer of conservativeness.

8.7. Computational times

As discussed in Table 1, the computational complexity of our
approach depends on the number of assets M and the trading fre-
quency/discretization T. In particular, for European and Asian style
options, the size of the option pricing linear optimization problem
is of the order OðM % TÞ. Moreover, the replication error or the !-
arbitrage decreases with increase in discretization T. In order to
evaluate the tractability of our approach, we considered pricing
M-asset European and Asian options with M = 200, 500 using the
UCLT uncertainty set. We calculated the computational times of
the option pricing problem for a discretization T chosen to achieve
a replication error of within 1%. We present the results in Tables 5
and 6 below. We observe that we were able to solve the optimiza-
tion problems within a matter of minutes.

We next considered the effect of the uncertainty set on the
computational times. In particular, we set M ¼ 500 and computed
the computational times when we change the uncertainty set from
UCLT to UCorr and UHT. We present the results in Table 7 and observe
that the type of uncertainty set does not have considerable effect
on the computational times (see Tables 8 and 9).

9. Conclusions

In this paper, we make a case for the need of an alternate
approach to model the uncertainty in the asset returns and propose
an uncertainty set based model for the same. This approach com-
bined with the !-arbitrage approach allows us to price a variety
of options using linear optimization, even under the presence of
transaction costs and multiple assets. The main advantage of our
model is that unlike dynamic programming, our approach scales

polynomially (as opposed to exponentially) with the dimension
of the original pricing problem. We illustrate our method and
report results for a variety of options (European, Asian, Lookback,
American, Index). The results show that our approach produces
prices that are close to those observed in the options market.
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